Tutorial
Post #8

Building Your Own AI Lyric Generator: Tools, Techniques, and Best Practices

Practical guide to fine-tuning LLMs, leveraging open-source models on Hugging Face, and implementing music-conditioned generation with real code examples and deployment strategies.

JewelMusic Dev Team
January 8, 2025
18 min read
Building AI Lyric Generator

Training Paradigms: From Scratch vs Fine-Tuning

Training from Scratch ❌
  • • Requires massive datasets (100GB+)
  • • Expensive compute (weeks on GPUs)
  • • Complex architecture design
  • • Often inferior results
Fine-Tuning Pre-trained ✓
  • • Works with small datasets (MB)
  • • Hours on consumer GPUs
  • • Leverages existing knowledge
  • • State-of-the-art results

💡 Recommendation:

Always start with fine-tuning a pre-trained model like GPT-2, Llama 2, or Flan-T5. These models already understand language fundamentals and just need to learn your specific style.

Step-by-Step Implementation Guide

1
Environment Setup

Install required dependencies for training and inference:

requirements.txt
1# Core dependencies
2pip install transformers datasets accelerate
3pip install torch torchvision torchaudio
4
5# For music feature extraction
6pip install librosa pretty_midi
7
8# Hugging Face CLI for model upload
9pip install huggingface_hub
2
Data Preparation

Structure your lyric dataset for fine-tuning:

data_preparation.py
1import pandas as pd
2from datasets import Dataset
3
4# Load your lyrics data
5lyrics_df = pd.read_csv('lyrics.csv')
6
7# Format for training
8def format_lyrics(example):
9    return {
10        'text': f"<genre>{example['genre']}</genre> "
11                f"<mood>{example['mood']}</mood>\n"
12                f"{example['lyrics']}"
13    }
14
15# Create HF Dataset
16dataset = Dataset.from_pandas(lyrics_df)
17dataset = dataset.map(format_lyrics)

Tip: Include metadata tags like genre, mood, or artist to enable conditional generation.

3
Fine-Tuning Script

Fine-tune a pre-trained model on your lyrics:

fine_tuning.py
1from transformers import (
2    AutoTokenizer,
3    AutoModelForCausalLM,
4    TrainingArguments,
5    Trainer,
6    DataCollatorForLanguageModeling
7)
8
9# Load pre-trained model
10model_name = "gpt2"  # or "meta-llama/Llama-2-7b"
11tokenizer = AutoTokenizer.from_pretrained(model_name)
12model = AutoModelForCausalLM.from_pretrained(model_name)
13
14# Add padding token
15tokenizer.pad_token = tokenizer.eos_token
16
17# Tokenize dataset
18def tokenize_function(examples):
19    return tokenizer(
20        examples["text"],
21        truncation=True,
22        padding="max_length",
23        max_length=512
24    )
25
26tokenized_dataset = dataset.map(tokenize_function, batched=True)
27
28# Training arguments
29training_args = TrainingArguments(
30    output_dir="./lyric-generator",
31    overwrite_output_dir=True,
32    num_train_epochs=3,
33    per_device_train_batch_size=4,
34    save_steps=500,
35    save_total_limit=2,
36    prediction_loss_only=True,
37    logging_steps=100,
38    warmup_steps=500,
39    learning_rate=5e-5,
40    fp16=True,  # Mixed precision training
41)
42
43# Create trainer
44trainer = Trainer(
45    model=model,
46    args=training_args,
47    data_collator=DataCollatorForLanguageModeling(
48        tokenizer=tokenizer,
49        mlm=False,
50    ),
51    train_dataset=tokenized_dataset,
52)
53
54# Start training
55trainer.train()
4
Music-Conditioned Generation

Extract musical features and condition generation:

music_conditioning.py
1import librosa
2import numpy as np
3
4def extract_music_features(audio_path):
5    """Extract musical features for conditioning"""
6    y, sr = librosa.load(audio_path)
7    
8    # Tempo and beat tracking
9    tempo, beats = librosa.beat.beat_track(y=y, sr=sr)
10    
11    # Chroma features (pitch content)
12    chroma = librosa.feature.chroma_stft(y=y, sr=sr)
13    
14    # Spectral features (timbre)
15    spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=sr)
16    
17    # Structure (verse/chorus detection)
18    boundaries = librosa.segment.agglomerative(
19        librosa.feature.mfcc(y=y, sr=sr).T, 
20        k=5
21    )
22    
23    return {
24        'tempo': tempo,
25        'key': np.argmax(np.mean(chroma, axis=1)),
26        'energy': np.mean(spectral_centroid),
27        'structure': boundaries
28    }
29
30def generate_conditioned_lyrics(model, tokenizer, music_features):
31    """Generate lyrics conditioned on music"""
32    # Create prompt with musical context
33    prompt = f"""<tempo>{music_features['tempo']:.0f}</tempo>
34<key>{music_features['key']}</key>
35<energy>{music_features['energy']:.2f}</energy>
36[Verse 1]"""
37    
38    # Tokenize and generate
39    inputs = tokenizer(prompt, return_tensors="pt")
40    
41    with torch.no_grad():
42        outputs = model.generate(
43            **inputs,
44            max_length=256,
45            temperature=0.8,
46            do_sample=True,
47            top_p=0.9,
48            repetition_penalty=1.2
49        )
50    
51    return tokenizer.decode(outputs[0], skip_special_tokens=True)
5
Syllable-Constrained Decoding

Implement LYRA-style constraint-based generation:

constrained_generation.py
1import pyphen
2
3class ConstrainedLyricGenerator:
4    def __init__(self, model, tokenizer):
5        self.model = model
6        self.tokenizer = tokenizer
7        self.dic = pyphen.Pyphen(lang='en')
8    
9    def count_syllables(self, text):
10        """Count syllables in text"""
11        words = text.split()
12        total = 0
13        for word in words:
14            syllables = self.dic.inserted(word).split('-')
15            total += len(syllables)
16        return total
17    
18    def generate_with_constraints(self, 
19                                 melody_notes, 
20                                 prompt=""):
21        """Generate lyrics matching melody structure"""
22        lyrics = []
23        
24        for phrase_notes in melody_notes:
25            target_syllables = len(phrase_notes)
26            
27            # Generate until syllable count matches
28            attempts = 0
29            while attempts < 10:
30                candidate = self._generate_line(prompt)
31                
32                if self.count_syllables(candidate) == target_syllables:
33                    lyrics.append(candidate)
34                    prompt = " ".join(lyrics[-2:])  # Context
35                    break
36                
37                attempts += 1
38            
39            if attempts == 10:
40                # Fallback: truncate/pad to match
41                lyrics.append(self._adjust_syllables(
42                    candidate, target_syllables
43                ))
44        
45        return "\n".join(lyrics)

Available Open-Source Models

ModelSizeTaskHugging Face Link
smgriffin/pop-lyrics-generator-v1124MPop lyrics
grantsl/LyricaLlama7BGeneral lyrics
umerbappi/LyricGen3BMusic-to-lyrics
facebook/musicgen-large3.3BText-to-music

Best Practices for Production

Version Control & Experimentation
  • • Use MLflow or Weights & Biases for experiment tracking
  • • Version datasets alongside model checkpoints
  • • Document hyperparameters and training configs
Deployment Strategies
  • • Use ONNX or TorchScript for production inference
  • • Implement caching for common prompts
  • • Deploy with FastAPI + Docker for scalability
Quality Control
  • • Implement profanity and toxicity filters
  • • Add plagiarism detection against training data
  • • Human-in-the-loop validation for critical use cases

Quick Start Template

Complete Starter Project

Clone our complete starter template with pre-configured training scripts, inference API, and web interface:

Quick Start Commands
1# Clone the starter template
2git clone https://github.com/jewelmusic/lyric-generator-starter
3
4# Install dependencies
5cd lyric-generator-starter
6pip install -r requirements.txt
7
8# Download pre-trained model
9python download_model.py
10
11# Start training on your data
12python train.py --data_path ./data/lyrics.csv
13
14# Launch inference API
15python app.py

Advanced Techniques

LoRA Fine-Tuning

Use Low-Rank Adaptation for efficient fine-tuning of large models with minimal memory:

1pip install peft  # Parameter-Efficient Fine-Tuning

Multi-Modal Fusion

Combine audio embeddings with text generation using cross-attention layers for tighter music-lyric coupling.

Reinforcement Learning

Use RLHF (Reinforcement Learning from Human Feedback) to align outputs with musical preferences.

Resources & Community

Start Building Today

With the tools and techniques covered in this guide, you're ready to build your own AI lyric generator. Whether you're creating a commercial product or experimenting with creative AI, the combination of pre-trained models, fine-tuning, and music-aware constraints provides a powerful foundation.

🚀 Ready to integrate AI lyric generation into your platform?

JewelMusic provides enterprise-grade APIs and custom model training for music applications.